The Geometric Calibration and Validation for The ZY3-02 Satellite Optical Image

نویسندگان

  • Xinming Tang
  • Xiaoyong Zhu
چکیده

Chinese ZY3-02 satellite, which is the second of ZY3 series satellites, was launched in May 30th 2016 for complementing the mapping and earth observation. In order to eliminate various system errors of the platform and payload, the on-orbit geometric validation and calibration was carried out. Firstly, we introduced the parameters of the three-line stereo camera and multispectral camera bound on ZY3-02 in this paper. There are four optical cameras on ZY3-02: a 4-band nadir-looking multi-spectral camera with 5.8 m resolution, a 2.1m resolution nadir-looking panchromatic band camera, as well as 2.5m resolution forwardand backward-looking panchromatic band cameras. Compared with ZY3-01, the resolution of the forwardand backward-looking cameras on ZY3-02 were upgraded from 3.5 m to 2.5 m. Then we presented the methods and datasets used for calibration in details. After our calibration, the total positioning accuracy of the three-line camera images is better than 10m without ground control points (GCPs). The plane and height accuracy are improved to 3 and 2 m respectively, with few control points. The band-to-band registration accuracy of the multispectral camera is better than 0.15 pixels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Potential Assessment for ZY3-02 Triple Linear Array Imagery

ZiYuan3-02 (ZY3-02) is the first remote sensing satellite for the development of China’s civil space infrastructure (CCSI) and the second satellite in the ZiYuan3 series; it was launched successfully on 30 May 2016, aboard the CZ-4B rocket at the Taiyuan Satellite Launch Center (TSLC) in China. Core payloads of ZY3-02 include a triple linear array camera (TLC) and a multi-spectral camera, and t...

متن کامل

ZY3-02 Laser Altimeter Footprint Geolocation Prediction

Successfully launched on 30 May 2016, ZY3-02 is the first Chinese surveying and mapping satellite equipped with a lightweight laser altimeter. Calibration is necessary before the laser altimeter becomes operational. Laser footprint location prediction is the first step in calibration that is based on ground infrared detectors, and it is difficult because the sample frequency of the ZY3-02 laser...

متن کامل

Pointing Angle Calibration of ZY3-02 Satellite Laser Altimeter using Terrain Matching

After GLAS (Geo-science Laser Altimeter System) loaded on the ICESat (Ice Cloud and land Elevation Satellite), satellite laser altimeter attracts more and more attention. ZY3-02 equipped with the Chinese first satellite laser altimeter has been successfully launched on 30 May, 2016. The geometric calibration is an important step for the laser data processing and application. The method to calcu...

متن کامل

On-Orbit Geometric Calibration Model and Its Applications for High-Resolution Optical Satellite Imagery

On-orbit geometric calibration is a key technology to guarantee the geometric quality of high-resolution optical satellite imagery. In this paper, we present an approach for the on-orbit geometric calibration of high-resolution optical satellite imagery, focusing on two core problems: constructing an on-orbit geometric calibration model and proposing a robust calculation method. First, a rigoro...

متن کامل

Matching Multi-Source Optical Satellite Imagery Exploiting a Multi-Stage Approach

Geometric distortions and intensity differences always exist in multi-source optical satellite imagery, seriously reducing the similarity between images, making it difficult to obtain adequate, accurate, stable, and well-distributed matches for image registration. With the goal of solving these problems, an effective image matching method is presented in this study for multi-source optical sate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017